Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 39
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
Sci Total Environ ; 923: 171444, 2024 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-38438036

RESUMO

Sewage sludge (SS) is rich in plant nutrients, including P, N, and organic C, but often contains toxic metals (TMs), which hinders its potential use in agriculture. The efficiency of removal of TMs by washing with ethylenediamine tetraacetate (EDTA), in combination with hydrodynamic cavitation (HC) and the usability of washed sewage sludge as fertilizer were investigated. The environmental risk was assessed. During 8 wash batches an average 35, 68, 47 and 45 % of Pb, Zn, Cd and Cu, respectively, as well as 22 and 5 % Mn and Fe were removed from the SS. The process solutions and EDTA were recycled at a pH gradient of 12.5-2, which was achieved by adding quicklime (CaO) and then acidification by H2SO4, so that no wastewater was produced, only solid waste (ReSoil® method). The quality of the recycled process solutions (they remained unsaturated with salts) and the efficiency of the washing process were maintained across all batches. On average, 46 % of the EDTA was lost during the process and was replenished. The initial leachability of EDTA-mobilized Pb, Zn, Cu, Cr and Fe remaining in the washed SS increased 6-, 17-, 3-, 11- and 11-fold, respectively, but not to hazardous levels except for Zn. After washing, P and K remained in the SS, plant-available P increased 3.3-fold, while total N and C were reduced by 20.28 and 2.44 %, respectively. Washed SS was used as fertilizer in the pot experiment. The yield of Brassica juncea did not improve, the uptake of TMs by the plants and the leaching of TMs from the soil were minimal. Our study highlighted the drawbacks and potential feasibility of the new SS washing method.


Assuntos
Metais Pesados , Poluentes do Solo , Esgotos , Metais Pesados/análise , Ácido Edético , Fertilizantes , Hidrodinâmica , Chumbo , Solo , Plantas , Poluentes do Solo/análise
2.
Environ Int ; 182: 108285, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37972530

RESUMO

Water scarcity, one of the most pressing challenges we face today, has developed for many reasons, including the increasing number of waterborne pollutants that affect the safety of the water environment. Waterborne human, animal and plant viruses represent huge health, environmental, and financial burden and thus it is important to efficiently inactivate them. Therefore, the main objective of this study was to construct a unique device combining plasma with supercavitation and to evaluate its efficiency for water decontamination with the emphasis on inactivation of viruses. High inactivation (>5 log10 PFU/mL) of bacteriophage MS2, a human enteric virus surrogate, was achieved after treatment of 0.43 L of recirculating water for up to 4 min. The key factors in the inactivation were short-lived reactive plasma species that damaged viral RNA. Water treated with plasma for a short time required for successful virus inactivation did not cause cytotoxic effects in the in vitro HepG2 cell model system or adverse effects on potato plant physiology. Therefore, the combined plasma-supercavitation device represents an environmentally-friendly technology that could provide contamination-free and safe water.


Assuntos
Gases em Plasma , Vírus , Animais , Humanos , Água , Gases em Plasma/farmacologia , Inativação de Vírus
3.
Ultrason Sonochem ; 101: 106657, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37890434

RESUMO

A lot of effort has been dedicated in recent years towards understanding the basics of cavitation induced emulsification, mainly in the form of single cavitation bubbles. Regarding bulk acoustic emulsification, a lot less research has been done. In our here presented work we utilize advanced high-speed observation techniques in visible light and X-Rays to build upon that knowledge and advance the understanding of bulk emulsion preparation. During research we discovered that emulsion formation has an acute impact on the behavior of the interface and more importantly on its position relative to the horn, hence their interdependence must be carefully studied. We did this by observing bulk emulsification with 2 cameras simultaneously and corroborating these measurements with observation under X-Rays. Since the ultrasonic horns location also influences interface behavior, we shifted its initial position to different locations nearer to and further away from the oil-water interface in both phases. We found that a few millimeters distance between the horn and interface is not enough for fine emulsion formation, but that they must be completely adjacent to each other, with the horn being located inside the oil-water interface. We also observed some previously undiscovered phenomena, such as the splitting of the interface to preserve continuous emulsion formation, climbing of the interface up the horn and circular interface protrusions towards the horn forming vertical emulsion streams. Interestingly, no visible W/O emulsion was ever formed during our experiments, only O/W regardless of initial horn position.

4.
J Environ Manage ; 347: 119074, 2023 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-37804635

RESUMO

Anaerobic digestion in wastewater treatment plants converts its unwanted end product - waste activated sludge into biogas. Even if the process is well established, pre-treatment of the sludge can further improve its efficiency. In this study, four treatment regimes for increasing methane production through prior sludge disintegration were investigated using lab-scale cavitation generator and real sludge samples. Three different cavitating (attached cavitation regime, developed cloud shedding cavitation regime and cavitation in a wake regime) and one non-cavitating regime at elevated static pressure were studied in detail for their effectiveness on physical and chemical properties of sludge samples. Volume-weighted mean diameter D[4,3] of sludge's particles decreased by up to 92%, specific surface area increased by up to 611%, while viscosity (at a shear rate of 3.0 s-1) increased by up to 39% in the non-cavitating and decreased by up to 24% in all three cavitating regimes. Chemical changes were more pronounced in cavitating regimes, where released soluble chemical oxygen demand (sCOD) and increase of dissolved organic matter (DOM) compounds by up to 175% and 122% were achieved, respectively. Methane production increased in all four cases, with the highest increase of 70% corresponding to 312 mL CH4 g-1 COD. However, this treatment was not particularly efficient in terms of energy consumption. The best energy balance was found for the regime with a biochemical methane potencial increase of 43%.


Assuntos
Hidrodinâmica , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos , Anaerobiose , Reatores Biológicos , Metano
5.
Water Res ; 236: 119956, 2023 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-37087917

RESUMO

Cavitation is a potentially useful phenomenon accompanied by extreme conditions, which is one of the reasons for its increased use in a variety of applications, such as surface cleaning, enhanced chemistry, and water treatment. Yet, we are still not able to answer many fundamental questions related to efficacy and effectiveness of cavitation treatment, such as: "Can single bubbles destroy contaminants?" and "What precisely is the mechanism behind bubble's cleaning power?". For these reasons, the present paper addresses cavitation as a tool for eradication and removal of wall-bound bacteria at a fundamental level of a single microbubble and a bacterial cell. We present a method to study bubble-bacteria interaction on a nano- to microscale resolution in both space and time. The method allows for accurate and fast positioning of a single microbubble above the individual wall-bound bacterial cell with optical tweezers and triggering of a violent microscale cavitation event, which either results in mechanical removal or destruction of the bacterial cell. Results on E. coli bacteria show that only cells in the immediate vicinity of the microbubble are affected, and that a very high likelihood of cell detachment and cell death exists for cells located directly under the center of a bubble. Further details behind near-wall microbubble dynamics are revealed by numerical simulations, which demonstrate that a water jet resulting from a near-wall bubble implosion is the primary mechanism of wall-bound cell damage. The results suggest that peak hydrodynamic forces as high as 0.8 µN and 1.2 µN are required to achieve consistent E. coli bacterial cell detachment or death with high frequency mechanical perturbations on a nano- to microsecond time scale. Understanding of the cavitation phenomenon at a fundamental level of a single bubble will enable further optimization of novel water treatment and surface cleaning technologies to provide more efficient and chemical-free processes.


Assuntos
Escherichia coli , Purificação da Água , Hidrodinâmica , Bactérias , Microbolhas
6.
Ultrason Sonochem ; 95: 106400, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-37060711

RESUMO

The COVID -19 pandemic reminded us that we need better contingency plans to prevent the spread of infectious agents and the occurrence of epidemics or pandemics. Although the transmissibility of SARS-CoV-2 in water has not been confirmed, there are studies that have reported on the presence of infectious coronaviruses in water and wastewater samples. Since standard water treatments are not designed to eliminate viruses, it is of utmost importance to explore advanced treatment processes that can improve water treatment and help inactivate viruses when needed. This is the first study to investigate the effects of hydrodynamic cavitation on the inactivation of bacteriophage phi6, an enveloped virus used as a SARS-CoV-2 surrogate in many studies. In two series of experiments with increasing and constant sample temperature, virus reduction of up to 6.3 logs was achieved. Inactivation of phi6 at temperatures of 10 and 20 °C occurs predominantly by the mechanical effect of cavitation and results in a reduction of up to 4.5 logs. At 30 °C, the reduction increases to up to 6 logs, where the temperature-induced increased susceptibility of the viral lipid envelope makes the virus more prone to inactivation. Furthermore, the control experiments without cavitation showed that the increased temperature alone is not sufficient to cause inactivation, but that additional mechanical stress is still required. The RNA degradation results confirmed that virus inactivation was due to the disrupted lipid bilayer and not to RNA damage. Hydrodynamic cavitation, therefore, has the potential to inactivate current and potentially emerging enveloped pathogenic viruses in water at lower, environmentally relevant temperatures.


Assuntos
Bacteriófagos , COVID-19 , Vírus , Humanos , Hidrodinâmica , Inativação de Vírus , SARS-CoV-2
7.
Artigo em Inglês | MEDLINE | ID: mdl-36767910

RESUMO

Contamination with toxic metals prevents the use of sewage sludge (SS) as a soil fertilizer. Hydrodynamic cavitation, thermal microwaving, microwave-assisted alkaline, and acid hydrolysis coupled with ethylenediaminetetraacetate (EDTA) washing were tested as a method to remove toxic metals from SS. Acid hydrolysis coupled with EDTA washing was most effective and was used in a closed-loop process based on ReSoil technology. EDTA and process solutions were recycled at a pH gradient of 12.5-2, which was imposed by the addition of quicklime (CaO) and H2SO4. An average of 78%-Pb, 76%-Zn, 1%-Cu, and 17%-Cr were removed from SS in five consecutive batches. No wastewater was generated, only solid waste (40%). The EDTA lost in the process (42%) was resupplied in each batch. In a series of batches, the process solutions retained metal removal efficiency and quality. The treatment removed 70% and 23% of P and N, respectively, from SS and increased the leachability of Zn, Cu, Mn, and Fe in the washed SS by 11.7, 6.8, 1.4, and 5.2 times, respectively. Acid hydrolysis coupled with EDTA washing proved to be a technically feasible, closed-loop process but needs further development to reduce reagent, material, and nutrient loss and to reduce toxic emissions from the washed sludge.


Assuntos
Metais Pesados , Poluentes do Solo , Ácido Edético , Metais Pesados/análise , Esgotos , Hidrólise , Solo , Poluentes do Solo/análise
8.
Ultrason Sonochem ; 90: 106212, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36327924

RESUMO

Graphene is a valuable and useful nanomaterial due to its exceptionally high tensile strength, electrical conductivity and transparency, as well as the ability to tune its materials properties via functionalization. One of the most important features needed to integrate functionalized graphene into products via scalable processing is the effectiveness of graphene dispersion in aqueous and organic solvents. In this study, we aimed to achieve the functionalization of reduced graphene oxide (rGO) by sonication in a one-step process using polyvinyl alcohol (PVA) as a model molecule to be bound to the rGO surface. We investigated the influence of the sonication energy on the efficacy of rGO functionalization. The correlation between the performance of the high-intensity ultrasonic horn and the synthesis of the PVA functionalized rGO was thoroughly investigated by TGA coupled with MS, and IR, Raman, XPS, Laser diffraction, and SEM analysis. The results show that the most soluble PVA-functionalized rGO is achieved at 50% of the ultrasonic horn amplitude. Analysis of cavitation dynamics revealed that in the near vicinity of the horn it is most aggressive at the highest amplitude (60%). This causes rGO flakes to break into smaller domains, which negatively affects the functionalization process. On the other hand, the maximum of the pressure pulsations far away from the horn is reached at 40% amplitude, as the pressure oscillations are attenuated significantly in the 2-phase flow region at higher amplitudes. These observations corelate well with the measured degree of functionalization, where the optimum functionalized rGO dispersion is reached at 50% horn amplitude, and generally imply that cavitation intensity must be carefully adjusted to achieve optimal rGO functionalization.


Assuntos
Grafite , Nanoestruturas , Água , Álcool de Polivinil
9.
Ultrason Sonochem ; 89: 106159, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36099775

RESUMO

Acoustic cavitation, generated by a piezo-driven transducer, is a commonly used technique in a variety of processes, from homogenization, emulsification, and intensification of chemical reactions to surface cleaning and wastewater treatment. An ultrasonic horn, the most commonly used acoustic cavitation device, creates unique cavitation conditions under the horn tip that depend on various parameters such as the tip diameter, the driving frequency of the horn, its amplitude, and fluid properties. Unlike for hydrodynamic cavitation, the scaling laws for acoustic cavitation are poorly understood. Empirical relationships between cavitation dynamics, ultrasonic horn operating conditions, and fluid properties were found through systematic characterization of cavitation under the tip. Experiments were conducted in distilled water with various sodium chloride salt concentrations under different horn amplitudes, tip geometries, and ambient pressures. Cavitation characteristics were monitored by high-speed (200,000 fps) imaging, and numerous relations were found between operating conditions and cavitation dynamics. The compared results are discussed along with a proposal of a novel acoustic cavitation parameter and its relationship to the size of the cavitation cloud under the horn tip. Similar to the classical hydrodynamic cavitation number, the authors propose for the first time an acoustic cavitation parameter based on experimental results.


Assuntos
Cloreto de Sódio , Ultrassom , Acústica , Transdutores , Água
10.
Ultrason Sonochem ; 87: 106053, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35690044

RESUMO

Numerous studies have already shown that the process of cavitation can be successfully used for water treatment and eradication of bacteria. However, most of the relevant studies are being conducted on a macro scale, so the understanding of the processes at a fundamental level remains poor. In attempt to further elucidate the process of cavitation-assisted water treatment on a scale of a single bubble, the present paper numerically addresses interaction between a collapsing microbubble and a nearby compliant structure, that mechanically and structurally resembles a bacterial cell. A fluid-structure interaction methodology is employed, where compressible multiphase flow is considered and the bacterial cell wall is modeled as a multi-layered shell structure. Simulations are performed for two selected model structures, each resembling the main structural features of Gram-negative and Gram-positive bacterial cell envelopes. The contribution of two independent dimensionless geometric parameters is investigated, namely the bubble-cell distance δ and their size ratio ς. Three characteristic modes of bubble collapse dynamics and four modes of spatiotemporal occurrence of peak local stresses in the bacterial cell membrane are identified throughout the parameter space considered. The former range from the development of a weak and thin jet away from the cell to spherical bubble collapses. The results show that local stresses arising from bubble-induced loads can exceed poration thresholds of cell membranes and that bacterial cell damage could be explained solely by mechanical effects in absence of thermal and chemical ones. Based on this, the damage potential of a single microbubble for bacteria eradication is estimated, showing a higher resistance of the Gram-positive model organism to the nearby bubble collapse. Microstreaming is identified as the primary mechanical mechanism of bacterial cell damage, which in certain cases may be enhanced by the occurrence of shock waves during bubble collapse. The results are also discussed in the scope of bacteria eradication by cavitation treatment on a macro scale, where processes of hydrodynamic and ultrasonic cavitation are being employed.


Assuntos
Microbolhas , Ultrassom , Membrana Celular , Hidrodinâmica
11.
Water Res ; 220: 118628, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35640501

RESUMO

Hydrodynamic cavitation was evaluated for its reactive oxygen species production in several convergent-divergent microchannel at the transition from micro to milli scale. Channel widths and heights were systematically varied to study the influence of geometrical parameters at the transitory scale. A photomultiplier tube was used for time-resolved photon detection and monitoring of the chemiluminescent luminol oxidation reactions, allowing for a contactless and in situ quantization of reactive oxygen species production in the channels. The radical production rates at various flow parameters were evaluated, showing an optimal yield per flow rate exists in the observed geometrical range. While cavitation cloud shedding was the prevailing regime in this type of channels, the photon arrival time analysis allowed for an investigation of the cavitation structure dynamics and their contribution to the chemical yield, revealing that radical production is not linked to the synchronous cavitation cloud collapse events. Instead, individual bubble collapses occurring throughout the cloud formation were recognized to be the source of the reactive oxygen species.


Assuntos
Hidrodinâmica , Luminol , Medições Luminescentes , Luminol/farmacologia , Oxirredução , Espécies Reativas de Oxigênio
12.
Ultrason Sonochem ; 82: 105898, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-34973580

RESUMO

Waterborne plant viruses can destroy entire crops, leading not only to high financial losses but also to food shortages. Potato virus Y (PVY) is the most important potato viral pathogen that can also affect other valuable crops. Recently, it has been confirmed that this virus is capable of infecting host plants via water, emphasizing the relevance of using proper strategies to treat recycled water in order to prevent the spread of the infectious agents. Emerging environmentally friendly methods such as hydrodynamic cavitation (HC) provide a great alternative for treating recycled water used for irrigation. In the experiments conducted in this study, laboratory HC based on Venturi constriction with a sample volume of 1 L was used to treat water samples spiked with purified PVY virions. The ability of the virus to infect plants was abolished after 500 HC passes, corresponding to 50 min of treatment under pressure difference of 7 bar. In some cases, shorter treatments of 125 or 250 passes were also sufficient for virus inactivation. The HC treatment disrupted the integrity of viral particles, which also led to a minor damage of viral RNA. Reactive species, including singlet oxygen, hydroxyl radicals, and hydrogen peroxide, were not primarily responsible for PVY inactivation during HC treatment, suggesting that mechanical effects are likely the driving force of virus inactivation. This pioneering study, the first to investigate eukaryotic virus inactivation by HC, will inspire additional research in this field enabling further improvement of HC as a water decontamination technology.


Assuntos
Potyvirus , Hidrodinâmica , Plantas , Solanum tuberosum , Água
13.
Biomacromolecules ; 23(3): 847-862, 2022 03 14.
Artigo em Inglês | MEDLINE | ID: mdl-35099936

RESUMO

Cellulose fibrils are the structural backbone of plants and, if carefully liberated from biomass, a promising building block for a bio-based society. The mechanism of the mechanical release─fibrillation─is not yet understood, which hinders efficient production with the required reliable quality. One promising process for fine fibrillation and total fibrillation of cellulose is cavitation. In this study, we investigate the cavitation treatment of dissolving, enzymatically pretreated, and derivatized (TEMPO oxidized and carboxymethylated) cellulose fiber pulp by hydrodynamic and acoustic (i.e., sonication) cavitation. The derivatized fibers exhibited significant damage from the cavitation treatment, and sonication efficiently fibrillated the fibers into nanocellulose with an elementary fibril thickness. The breakage of cellulose fibers and fibrils depends on the number of cavitation treatment events. In assessing the damage to the fiber, we presume that microstreaming in the vicinity of imploding cavities breaks the fiber into fibrils, most likely by bending. A simple model showed the correlation between the fibrillation of the carboxymethylated cellulose (CMCe) fibers, the sonication power and time, and the relative size of the active zone below the sonication horn.


Assuntos
Carboidratos , Celulose , Biomassa , Celulose/química , Oxirredução , Sonicação
14.
Ultrason Sonochem ; 83: 105919, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35077964

RESUMO

The applications of bacterial sonolysis in industrial settings are plagued by the lack of the knowledge of the exact mechanism of action of sonication on bacterial cells, variable effectiveness of cavitation on bacteria, and inconsistent data of its efficiency. In this study we have systematically changed material properties of E. coli cells to probe the effect of different cell wall layers on bacterial resistance to ultrasonic irradiation (20 kHz, output power 6,73 W, horn type, 3 mm probe tip diameter, 1 ml sample volume). We have determined the rates of sonolysis decay for bacteria with compromised major capsular polymers, disrupted outer membrane, compromised peptidoglycan layer, spheroplasts, giant spheroplasts, and in bacteria with different cell physiology. The non-growing bacteria were 5-fold more resistant to sonolysis than growing bacteria. The most important bacterial cell wall structure that determined the outcome during sonication was peptidoglycan. If peptidoglycan was remodelled, weakened, or absent the cavitation was very efficient. Cells with removed peptidoglycan had sonolysis resistance equal to lipid vesicles and were extremely sensitive to sonolysis. The results suggest that bacterial physiological state as well as cell wall architecture are major determinants that influence the outcome of bacterial sonolysis.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Bactérias , Parede Celular/metabolismo , Escherichia coli/fisiologia , Proteínas de Escherichia coli/metabolismo , Peptidoglicano/metabolismo
15.
Can J Chem Eng ; 100(12): 3502-3516, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36605789

RESUMO

The research on the potential of cavitation exploitation is currently an extremely interesting topic. To reduce the costs and time of the cavitation reactor optimization, nowadays, experimental optimization is supplemented and even replaced using computational fluid dynamics (CFD). One of the approaches towards sustainable water treatment is the use of the cavitation reactor with bluff elements mounted on its stator and rotor. The experimental results show that, besides the rotational speed, the spacing of the rotor pins has the most significant effect on the cavitation intensity and effectiveness, while the pin diameter and the surface roughness are less significant design parameters. The present paper uses a simplified CFD approach to investigate the conditions in the reactor and to select the optimal among a number of geometry variations.

16.
Sci Total Environ ; 806(Pt 4): 151414, 2022 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-34742970

RESUMO

Wastewater treatment plants, the last barrier between ever-increasing human activities and the environment, produce huge amounts, of unwanted semi-solid by-product - waste activated sludge. Anaerobic digestion can be used to reduce the amount of sludge. However, the process needs extensive modernisation and refinement to realize its full potential. This can be achieved by using efficient pre-treatment processes that result in high sludge disintegration and solubilization. To this end, we investigated the efficiency of a novel pinned disc rotational generator of hydrodynamic cavitation. The results of physical and chemical evaluation showed a reduction in mean particle size up to 88%, an increase in specific surface area up to 300% and an increase in soluble COD, NH4-N, NO3-N, PO4-P up to 155.8, 126.3, 250 and 29.7%, respectively. Microscopic images confirmed flocs disruption and damage to yeast cells and Epistilys species due to mechanical effects of cavitation such as microjets and shear forces. The observed cell ruptures and cracks were sufficient for the release of small soluble biologically relevant dissolved organic molecules into the bulk liquid, but not for the release of microbial DNA. Cavitation treatment also decreased total Pb concentrations by 70%, which was attributed to the reactions triggered by the chemical effects of cavitation. Additionally, the study confirmed the presence of microplastic particles and fibers of polyethylene, polyethylene terephthalate, polypropylene, and nylon 6 in the waste activated sludge.


Assuntos
Microplásticos , Esgotos , Anaerobiose , Humanos , Hidrodinâmica , Plásticos , Eliminação de Resíduos Líquidos , Águas Residuárias
17.
Ultrason Sonochem ; 78: 105706, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34411844

RESUMO

Hydrodynamic cavitation poses as a promising new method for wastewater treatment as it has been shown to be able to eradicate bacteria, inactivate viruses, and destroy other biological structures, such as liposomes. Although engineers are already commercializing devices that employ cavitation, we are still not able to answer the fundamental question: What exactly are the damaging mechanisms of hydrodynamic cavitation in various applications? In this light, the present paper numerically addresses the interaction between a single cavitation microbubble and a nearby lipid vesicle of a similar size. A coupled fluid-structure interaction model is employed, from which three critical modes of vesicle deformation are identified and temporally placed in relation to their corresponding driving mechanisms: (a) unilateral stretching at the waist of the liposome during the first bubble collapse and subsequent shock wave propagation, (b) local wrinkling at the tip until the bubble rebounds, and (c) bilateral stretching at the tip of the liposome during the phase of a second bubble contraction. Here, unilateral and bilateral stretching refer to the local in-plane extension of the bilayer in one and both principal directions, respectively. Results are discussed with respect to critical dimensionless distance for vesicle poration and rupture. Liposomes with initially equilibrated envelopes are not expected to be structurally compromised in cases with δ>1.0, when a nearby collapsing bubble is not in their direct contact. However, the critical dimensionless distance for the case of an envelope with pre-existing pores is identified at δ=1.9. Additionally, the influence of liposome-bubble size ratio is addressed, from which a higher potential of larger bubbles for causing stretching-induced liposome destruction can be identified.


Assuntos
Microbolhas , Hidrodinâmica , Lipossomos , Vírus
18.
Ultrason Sonochem ; 77: 105669, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34303127

RESUMO

In this study, the hydrodynamic cavitation and wastewater treatment performance of a rotary generator with pin disk for hydrodynamic cavitation are investigated. Various geometrical features and arrangements of rotor and stator pins were evaluated to improve the configuration of the cavitation device. The pilot device used to perform the experiments was upgraded with a transparent cover that allows visualization of the hydrodynamic cavitation in the rotor-stator region with high-speed camera and simultaneous measurement of pressure fluctuations. Based on the hydrodynamic characteristics, three arrangements were selected and evaluated with respect to the chemical effects of cavitation on a 200-liter wastewater influent sample. The experimental results show that the rotational speed and the spacing of the rotor pins have the most significant effect on the cavitation intensity and effectiveness, while the pin diameter and the surface roughness are less significant design parameters. Cavitation intensity increases with pin velocity, but can be inhibited if the pins are arranged too close together. At best configuration, COD was reduced by 31% in 15 liquid passes, consuming 8.2 kWh/kg COD. The number of liquid passes also proved to be an important process parameter for improving the energy efficiency.

19.
Ultrason Sonochem ; 77: 105663, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34298308

RESUMO

The research on the potential of cavitation exploitation is currently an extremely interesting topic. To reduce the costs and time of the cavitation reactor optimization, nowadays, experimental optimization is supplemented and even replaced using computational fluid dynamics (CFD). This is a very inviting opportunity for many developers, yet we find that all too often researchers with non-engineering background treat this "new" tool too simplistic, what leads to many misinterpretations and consequent poor engineering. The present paper serves as an example of how complex the flow features, even in the very simplest geometry, can be, and how much effort needs to be put into details of numerical simulation to set a good starting point for further optimization of cavitation reactors. Finally, it provides guidelines for the researchers, who are not experts in computational fluid dynamics, to obtain reliable and repeatable results of cavitation simulations.

20.
Sci Rep ; 11(1): 3506, 2021 02 10.
Artigo em Inglês | MEDLINE | ID: mdl-33568723

RESUMO

Understanding and controlling the interaction of cavitation bubbles and nearby material is becoming essential optimization of various processes. We examined the interaction of a single bubble with a membrane with different fluids on each side of it. Significant differences in bubble behavior depending on the fluid properties were observed, while the influence of membrane properties was less pronounced. The study has important implications, such as optimization of sonoporation (targeted drug delivery) where the mechanism, by which the permeability of the membrane is increased, is still not well understood. These results show that the focus of the optimization process should, in the first place, lie on the properties of liquids, rather than the mechanical properties of the membrane itself.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...